Smoke ventilation in common areas of single stair residential buildings

Some on-going issues and analysis

Stewart Miles
International Fire Consultants

The study and results reported are part on-going, personal academic work, and do not necessarily represent the views of any organisation
Smoke control in common areas

• Compartmentation is most important element
• Suppression may be significant
• Ventilation generally also required
 • Can assist means of escape
 • Can assist fire service operations
Smoke ventilation in single stair buildings

- To help protect stair enclosure
 - Limit smoke ingress before fire service arrival and during firefighting
- Where there are ‘extended’ corridor travel distances
 - Purge smoke that enters corridor prior to fire service arrival
 - Reduce severity of conditions in corridor during firefighting
Current ventilation practice

• Natural ventilation from corridor; or
• Mechanical extract ventilation from corridor
 • Sometimes augmented with mechanical supply too
 • Or sometimes open vents for inlet air
• Open vent at top of stair enclosure (with either of above)
• Air supply / pressurisation in stair enclosure not common
Some concerns

• Fire sizes considered are generally restricted to fuel-bed limited condition
 • i.e. contained fuel area and associated heat release rate
 • But, can post-flashover fires actually be more severe?
 • (and take smoke ventilation system beyond designed capability?)

• Can too much depressurisation in the corridor lead to hazards that are not generally considered?
 • e.g. smoke drawn under door threshold
 • Propensity for ‘backdraught’ conditions during firefighting?
Building geometry modelled
Apartment and common corridor
Smoke ventilation methods analysed

• External wall AOV in corridor
 • (plus top of stair AOV)
Smoke ventilation methods analysed

• Natural smoke shaft to corridor
 • (plus top of stair AOV)
Smoke ventilation methods analysed

• Mechanical extract from corridor
 • (plus top of stair AOV)
Smoke ventilation methods analysed

• Mechanical ‘push/pull’ in corridor
 • supply & extract in corridor
 • (plus top of stair AOV)
Smoke ventilation methods analysed

- Mechanical supply to stair
 - Fresh air into stair
 - Pressure-relief damper
 - (top of stair AOV omitted)
Smoke ventilation methods analysed

• Mechanical supply to stair, plus either:
 • External wall AOV in corridor, or
 • Mechanical ‘push/pull’ in corridor
Post-flashover fire scenario

• Steady-state condition
• Fire distributed across whole floor
• Assume:
 • Hot gas layer at 800°C & emissivity ~1
 • Fuel heat of gasification = 4 000 kJ kg⁻¹
 • (ranges from 1 000 to 5000 kJ kg⁻¹ for most fuels)
 • Heat of combustion = 20 000 kJ kg⁻¹
• Then
 • Energy (heat) release rate associated with fuel pyrolysis = 375 kW m⁻²
 • (would be higher if lower heat of gasification adopted)
Post-flashover fire scenario

- Fire spread across entire floor area in room of origin
 - $24m^2 \rightarrow 9 \text{ MW heat release}$
 - (assuming all fuel combusts)
- Window/vent 3m by 1.4m
 - From empirical correlation $\sim7.5\text{MW}$ heat release rate can be supported within room
 - (excess fuel can combust in flames outside window)
Illustration of fire from CFD model
Illustration of fire from CFD model
Comparison with a real fire

• Flame and smoke dynamics similar to the CFD model
Illustration of fire from CFD model – apartment door open
Modelling using Fire Dynamics Simulator

• 10cm mesh throughout

• Eddy dissipation combustion
 • Heat combustion 20 000 kJ kg$^{-1}$
 • 10% soot yield

• ‘Finite volume’ ray-tracing radiation model
 • 100 rays
 • Grey gas absorption sub-model
 • 0.35 radiative fraction (from combustion process)

• HVAC sub-model
 • For mechanical supply & extract boundary conditions
Simulations (scenarios) at fire service intervention stage

- Steady (post-flashover) fire source
- Ventilation system running
- Apartment door open
- Stair door (on fire floor) open to 20° angle
- Stair bottom (entrance) door open
- Simulations conducted for two to three minutes or until quasi-steady state reached
Simulations (scenarios) prior to fire service arrival

- Steady (post-flashover) fire source
- Ventilation system running
- Apartment door closed
 - 3mm threshold gap modelled using FDS ‘leak vent’ capability
- Stair door (on fire floor) closed
 - Unless ‘pulled-open’ as part of ventilation operation
- Stair bottom (entrance) door open
- Simulations conducted for two to three minutes or until quasi-steady state reached
Smoke transport at firefighting stage

- No corridor ventilation
Smoke transport at firefighting stage

- ADB corridor AOV
 - ~1m² aerodynamic free area
 - (equivalent to 1.5m² unobstructed rectangular opening)
Smoke transport at firefighting stage

- ADB natural smoke shaft
Smoke transport at firefighting stage

- Mechanical extract at 2 m\(^3\)s\(^{-1}\)
Smoke transport at firefighting stage

- Mechanical extract at 4 m3s$^{-1}$
Smoke transport at firefighting stage

- Mechanical extract at 6 m3s$^{-1}$
Smoke transport at firefighting stage

- Mechanical ‘push/pull’ at 2 m3s$^{-1}$
Smoke transport at firefighting stage

- Stair supply at 2 m^3s^{-1}
- No vent in corridor
Smoke transport at firefighting stage

- Stair supply at 2 m³s⁻¹
- Wall vent in corridor
Smoke transport at firefighting stage

• Stair supply at 4 m3s$^{-1}$
• No vent in corridor
Smoke transport at firefighting stage

- Stair supply at 4 m3s$^{-1}$
- Wall vent in corridor
Smoke transport at firefighting stage

- Mechanical ‘push/pull’ at 2 m3s$^{-1}$
- Stair supply at 2 m3s$^{-1}$
Smoke transport at firefighting stage

- Mechanical ‘push/pull’ at 2 m3s$^{-1}$
- Stair supply at 4 m3s$^{-1}$
Smoke transport prior to fire service arrival

- Mechanical ‘push/pull’ at 2 m3s$^{-1}$
Smoke transport prior to fire service arrival

- Low level mechanical extract
 - Air leakage into corridor
Smoke transport prior to fire service arrival

- Mechanical extract at 2 m3s$^{-1}$
 - ‘Reverse-hung’ stair door part-opening at ∼10Pa
To conclude

• Various issues relating to smoke ventilation in residential buildings warrants further investigation
 • Impact of post-flashover apartment fires
 • Potential for smoke and fire gases to be drawn into the corridor
 • Possible benefit of supplying air mechanically into the stair is being missed
 • For ‘extended corridors’ a combination of mechanical corridor smoke clearance (e.g. ‘push/pull’) and mechanical air supply into the stair may prove productive
• Work reported is very much ‘work in progress’ open for discussion
Thank you for your attention